
Basics of  kinetic plasma simulation
 

 • Vlasov-Poisson Equations
    • Particle codes
      - Klimontovich-Dupree representation
    • Vlasov codes
      - Semi-Lagrangian method and others
    • PIC simulation
      - NGP & SUDS, form factors
    • Computing Considerations
    • Remarks
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• Vlasov-Poisson system

E = −∂φ

∂x
,

,
∂2φ

∂x2
= −4πe

∫
(Fi − Fe)dv

dF

dt
≡ ∂F

∂t
+ v

∂F

∂x
+

q

m
E

∂F

∂v
= 0

 • Klimontovich-Dupree discrete representation:

J(x) = q

∫
vFdv = q

N∑

j=1

vjδ(x− xj)

n(x) =
∫

Fdv =
N∑

j=1

δ(x− xj)

F (x, v, t) =
N∑

j=1

δ(x− xj)δ(v − vj)

• Equations of Motion: 

dF

dt
≡ ∂F

∂t
+

dx

dt

∂F

∂x
+

dv

dt

∂F

∂v
= 0

,
dvj

dt
=

q

m
E(xj)

dxj

dt
= vj

∂

∂t
=

dxj

dt
· ∂

∂xj
+

dvj

dt
· ∂

∂vj

Discrete Phase Space Representation

• K-D discrete representation + Equations of Motion: 

p(x) = m

∫
v2Fdv = m

N∑

j=1

v2
j δ(x− xj)
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dF

dt
≡

∂F

∂t
+ v ·

∂F

∂x
+

q

m

(

E +
1

c
v × B

)

·
∂F

∂v
= 0

dxj

dt
= vj

dvj

dt
=

q

m

(

E +
1

c
vj × B

)

xj

F =
N∑

j=1

δ(x − xj)δ(v − vj)

• Vlasov Equation 

-- Particle codes:

-- Klimontovich and Dupree representation

,

F (xg + dxg,vg + dvg, t + dt) = F (xg,vg, t)

dvg

dt
=

q

m

(

E +
1

c
vg × B

)

xg

dxg

dt
= vg

-- Continuum codes: many ways to solve the equation,

,

-- e.g.,  

1. Semi-Lagrangian method 
[Cheng and Knorr, JCP ‘76],
2. Fourier Transform method
[Denavit and Kruer, Phys. Fluids‘72],
3. Finite-Difference method. 

Two Different Approaches for Plasma Simulations

j - particle

• Poisson’s Equation: same for both
∇

2φ = −4πe

∫
(Fi − Fe)dv E = −∇φ,

-- Poisson’s equation can be solved on a spatial grid 
-- It can also be solved through direct calculations using particles. 

representation

∇v · [v ×B(x)] = 0 ?
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Fj = qjqi
(xj − xi)
|xj − xi|3

Ej =
N∑

i=1

qi
(xj − xi)
|xj − xi|3

Coulomb’s Law:

Self-consistent N-body simulation: N^2 calculations
Tree Codes: NlogN calculations
Field Methods: N calculations

Hierarchical force calculation algorithms (e.g. Greengard 1990) provide fast, general, and 
reasonably accurate approximations for gravity and other inverse-square forces. They fill 
the gap between direct sum methods, which are accurate and general but require O(N2) 
operations for a complete force calculation, and field methods, which have limited 
generality and accuracy but require only O(N) operations. All hierarchical methods partition 
the mass distribution into a tree structure, where each node of the tree provides a concise 
description of the matter within some spatial volume. This tree structure is used to 
introduce explicit approximations into the force calculation. Hierarchical methods require 
either O(N) or O(N log N) operations per force calculation, depending on the 
representation employed. The algorithm described here improves on an earlier hierarchical 
O(N log N) method (Barnes & Hut 1986, hereafter BH86) which has been widely employed 
in astrophysical simulations.[http://www.ifa.hawaii.edu/faculty/barnes/treecode/
treeguide.html]
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Particle-In-Cell (PIC) Simulations --

The simulation particles can be regarded as Lagrangian markers 
embedded randomly in the Vlasov fluid moving with it through 
phase space [see, Morse and Nielson, 1969]. This Monti-Carlo 
viewpoint explicitly recognizes the random samplings of the 
particle-in-cell models in the phase space through collective effects, 
i.e., the particles influence each other through the self-consistent 
fields, rather than remaining independent markers in the phase-
fluid.  Therefore, we can use analytical methods analogous to those 
of normal plasma kinetic theory to understand their behavior[see, 
Birdsall & Langdon, 1991]. 
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Vlasov Continuum (VCON) Simulation --

Direct numerical integration of the Vlasov equation continuously 
generates filamentation of the distribution function in the phase space, 
the ripples. The challenge here is to develop affordable computational 
methods to dispose of these ripples without affecting the physics at 
hand [see, Cheng and Knorr, 1976]. Again, we need normal kinetic 
theory to understand the consequence of this ripple reduction on 
entropy production and, in turn, its effect on relevant (lower) velocity 
moments.  
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Kinetic Simulation of Plasmas via Lagrangian Method
d

dt
F (x, v, t) = 0

• Particle Simulation [Dawson et al., 1968; Birdsall et al., 1968]

• Vlasov Simulation: aka Continuum Simulation [Cheng and Knorr, 1976]

,F (x, v, t) =
N∑

j=1

wj [δ(x− xj(t)]δ[v − vj(t)]

F (x, v, t + ∆t) =
N∑

j=1

wj [δ(x− xj(t + ∆t)]δ[v − vj(t + ∆t)]

wj = 1 xj(t + ∆t) = xj(t) + vj(t)∆t vj(t + ∆t) = vj(t) +
q

m
E[xj(t)]∆t

,∆x = v∆t ∆v =
q

m
E∆t

Fj(x + ∆x, v + ∆v, t + ∆t) = Fj(x, v, t)

F (x, v, t) =
N∑

j=1

Fj(x, v, t)

- No re-normalization of the particle weight,       , in the simulation, i.e., it remains constant.wj

δx

δv (xj , vj , wj)

F (xj , vj) = Fj

- By re-normalizing       on a grid at every time step, the scheme is called the Vlasov simulationFj

- Without re-normalizing     , the scheme becomes similar to particle simulation, since                     Fj Fj = const.

Monday, October 4, 2010



• The phase space element, δxδv, will contort and filament in time:
- particle simulation, without re-normalization, can’t describe this phenomena, so it has to use many 
particles so as to approximate the phase space dynamics in long time simulations. Eventually, one 
would  run of the particles and the simulation can’t describe the correct physics.  
- Vlasov simulation needs to use a finer grid in phase space so as not to introduce unwanted physics, 
such as artificial dissipation through coarse graining of the velocity space. Artificial dissipation 
would result in artificial increase in entropy and, in turn, gives rise to artificial particle and energy 
transport.   

Kinetic Simulation of Plasmas via Lagrangian Method (cont.)

δx

δv (xj , vj , wj)

F (xj , vj) = Fj

• Another difference between the two:
- particle simulation uses only 3D spatial grids for charge calculation, which is easier for massively 
parallel computation, but has noise problem
- Vlasov simulation uses 3D spatial grids + 3D velocity space grids, which is harder for massively 
parallel computation, but has no noise problem.  

• One more difference:
- without re- normalization, particle simulation samples the phase space continuously
- with re-normalization, Vlasov simulation sees a discrete phase space  
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• Dawson’s sheet model  (‘62): 1000 sheets in one dimensional simulation; 
   Birdsall and Buneman were even earlier.

Particle Simulation of Plasmas: contributed by many 

• Finite-size particles and Particle-in-Cell (PIC) simulation : 
  [Dawson et al. ‘68; Birdsall et al. ‘68]
     -- Based on Klimontovich-Dupree representation 
     -- Close interactions are modified      
     -- Debye shielding w/o nλ   >> 1
     -- Long range interactions are intact
     -- Coulomb interactions become collisionless [Okuda et al. ‘72]
     -- Collisions can be re-introduced as subgrid phenomena.
     -- N   calculations reduce to NlogN

• Short wavelength and high frequency particle noise 
  is minimized through the charge sharing and 
  charge smoothing schemes and particle noise can be studied by 
  Fluctuation-Dissipation Theorem 
  [see, e.g., Klimontovich  ‘67, Langdon ‘79]

3
D

• Landau Damping damps away long wavelength
  numerical noise due to finite number of particles
  and most of the numerical inaccuracies.    

2
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dFα

dt
≡ ∂Fα

∂t
+ v

∂Fα

∂x
− qα

mα

∂φ

∂x

∂Fα

∂v
= 0

Fα =
n0√
2πvtα

e−v2/2v2
tα

φ =
q

r
e−r/λD

φ =
q

r

Debye Shielding & Debye Cloud

Fα = F0α + δfα

δfα = − qα

Tα
φFα

δnα

n0
= − qα

Tα
φ

∇2φ− φ

λ2
D

= 0
1

λ2
D

=
1

λ2
Di

+
1

λ2
De

Shielded particle:

φ =
qα

r

Bare particle: 
“Simulation of Microscopic processes in Plasma,” Viktor Dycek, 
Proceedings of the Invited Papers for International Conference on 
Plasma Physics, Kiev, USSR, Vol. 2, World Scientific (April, 1987)
“Theory and Simulation of the Test Particle Debye Cloud,” Huang, 
Hsin-Chien, PH.D. Thesis, UCLA (1988).

Shielding cloud consisting of electrons and ions: quasineutral

∇2 → 1
r2

∂

∂r
(r2 ∂

∂r
) -- spherical coord.

φ =
qα

r
e−r/λD
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∂F

∂t
+

∂

∂x

· (F
dx

dt
) +

∂

∂v

· (F
dv

dt
) = 0

nα(x) =

∫
Fαdv =

N∑
j=1

δ(x − xαj) →
N∑

j=1

S(x − xαj)

Fi = qiE(xi) =
∑

j !=i

qiqj(xi − xj)/|xi − xj |
3

Fi = qiE(xi) =
∑

j !=i

qiqj(xi − xj)/λ3

D

0 1 2 3 4 5

r/λD

φ ∝ 1/r

Some Basic Principles of PIC
• Particle simulation actually solves the following equation: 
   identical to Vlasov equation for a conservative system. 

• Shape function, S,  for finite-size particles 

• Force modification for finite-size particles mimicking the Debye cloud: 

• But, the long range force is intact

• Thus, PIC achieves Debye shielding without using  millions of particles 
   to satisfy nλ   >> 13

D

• Landau damping plays a crucial part for numerical stability.  
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One-Dimensional Particle Simulation

ρ(x) =
∑

α

qα

∑

j

δ(x − xαj)

Fαj = qαE(xαj) = qα

∫
α

E(x)δ(x − xαj)dx

dxαj

dt
= vαj

∂E

∂x
= 4πρ

dvαj

dt
=

Fαj

mα

=
qα

mα

E(xαj)

• Charge density given by each particle -- α is the species and j is the particle

• Force on the j-th particle 

• Poisson’s equation

• Particle pushing

• In order to solve Poisson’s equation on the grid, we need to put charge density on the grid.
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Nearest Grid Point (NGP)   -- noisy for short wavelength modes  

One-Dimensional PIC (cont.)

(ρNGP )α,g = qα

∑

j∈g

1

Fαj = qα

∫
E(x)δ(x − xg)dx

j ∈ g

• Put the j-th particle on the nearest grid g

• Force on the j-th particle 

j ∈ g

ρ(x) =
∑

α

qα

∑

j

δ(x − xαj)

Charge density is now given on a grid rather than a collection of  of point particles.

ρ(x) =
∑

α

qα

∑

j

S(x − xαj)

Fαj = qαE(xαj) = qα

∫
E(x)S(x − xαj)dx

S(x) = exp(−x2/2a2)/(
√

2πa)∫
S(x)dx = 1

Subtracted Dipole Scheme (SUDS) 

smoothing out noise for 
short wavelength modes 

-- shape factor and a is the particle size

ρ(x) =
∑

g

∑

α

(ρNGP )α,gδ(x− xg)

S(k) = exp(−k2a2/2)
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ρ(x) ≈
∑

α

qα

∑

j

S(x − xg) + (xg − xαj)S
′(x − xg)

≈

∑

α

qα

∑

j

S(x − xg) +
xg − xαj

2∆x
× [S(x − xg−1) − S(x − xg+1)]

ρ(x) ≈
∑

α,g

[

(ρNGP )α,g + (ρD)α,g−1 − (ρD)α,g+1

]

S(x − xg)

=
∑

α,g

(ρP )α,gS(x − xg)

(ρD)α,g = qα

∑

j∈g

(xαj − xg)/2∆x

One-Dimensional PIC - SUDS

• Density is now given on a grid with smoothing for short wavelength noise.

• Higher order expansions can be used to further reduce noise, or just simply use more particles.  

Xg-1 Xg Xg+1Xj

δX
1 δX/2- δX/2
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Fαj ≈ qα

∫
E(x)S(x − xg)dx +qα

xg − xαj

2∆x

∫
E(x) [S(x − xg−1) − S(x − xg+1)] dx

S(x) =
∑

k

S∗(k)exp(−ikx)

E(k) = (1/L)

∫
E(x)exp(−ikx)dx

Fαj ≈ qαẼ(xg) + qα

xαj − xg

2∆x

[

Ẽ(xg+1) − Ẽ(xg−1)
]

One-Dimensional PIC - SUDS (cont.)
• Force on the j-th particle now becomes  

• Applying Fourier transforms in k-space

• We obtain 

• Poisson’s equation becomes

where

• Form factor to reduce short wavelength noise :  a - particle size ≈ grid size 

Xg-1 Xg Xg+1Xj

δX
Eg (δX/2) Eg+1- (δX/2) Eg-1

|S̃(k)|2 = e−k2a2

Ẽ(x) =
∑

k

Ẽ(k)exp(ikx) =
∑

k

S∗(k)E(k)exp(ikx)

=
[
−4πi

k
|S(k)|2

]∑

g

[
exp(−ikxg)

∑

α

(ρP )α,g

]
Ẽ(k) = (−4πi/k)S∗(k)ρ(k)
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One-Dimensional PIC - Linear Interpolation

Xg-1 Xg Xg+1Xj

δX
(1-δX )Eg (δX) Eg+1

-- SUDS involves three grid points for each particle and is the least noisy.

-- LI involves only two grid points and is a bit noisier, but is most popular. 

-- NGP involves only one grid point and is most noisy, but is computational most efficient.

One-Dimensional PIC - MSUDS & Quadratic Spline

Xg-1 Xg Xg+1Xj

δX
δX1-δX

-- QS is the best, but is also computational much more expensive.

-- Therefore, it is better off to use more particles with simpler interpolation schemes. 

Xg-1 Xg Xg+1Xj

δX
3/4-δX 2 (1/2) (1/2 + δX) 22(1/2) (1/2 - δX)

What are the shape functions, S(x), for NGP, LI, SUDS, MSUDS and QS? Hint: a step function, a triangle, a hat, and ...  ? 

Xg-1 Xg Xg+1Xj

δX
1/2 (1/2) (1/2 + δX)(1/2) (1/2 - δX)
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1
Particle Shapes

Xg-1 Xg Xg+1

1/2

1/4

Xg-1 Xg Xg+1

Linear Interpolation
1

Xg-1 Xg Xg+1

1/4

-1/4

SUDS

Xg-1 Xg Xg+1

1

NGP

MSUDS

QS is nearly Gaussian
Xg-1 Xg Xg+1
QS is nearly Gaussian
Xg-1 Xg Xg+1

3/4

1/8
0
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x(t + ∆t) = x(t) + v(t + ∆t/2)∆t

v(t + ∆t/2) = v(t − ∆t/2) + (q/m)E(t)∆t

∂F

∂t
+ v

∂F

∂x
+

q

m
E

∂F

∂v
= 0

∑
α

∑
j

mαv2

αj/2 −

∫
EJdx = 0 J =

∑

α

qα

∑

j

vαjδ(x − xαj)

∂ρ

∂t
+

∂J

∂x
= 0

∂E

∂t
+ 4πJ = 0

∑

α

∑

j

mαv2

αj/2 + L
∑

k

|E(k)|2/8π = 0

• Leap-frog Particle Pusher:

E(k) = Ẽ(k)/S∗

k

One-dimensional PIC (cont.)

• Energy Conservation 

x(t) 

v(t-Δt/2 ) v(t+Δt/2 )

x(t+Δt) 
E(t) 

From

Using Klimontovich-Dupree Representation to obtain

,

Charge conservation: 

From Poisson’s equation to obtain

We then obtain ,

dz

dt
= g(z, t)

z∗(t + ∆t) = z(t−∆t) + g[z(t), t]∆t

z(t + ∆t) = z(t) +
1
2
g[z(t), t]∆t +

1
2
g[z∗(t + ∆t), t + ∆t]∆t

dx

dt
!= g(x)

dv

dt
!= g(v),

PPP

Predictor-Corrector for
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Basic Differences in PIC and Continuum Codes

• Memory requirements:
    -- Particle codes/ Continuum codes
        = NxNyNz (1 + 5n) / NxNyNzNuNv
        = (1 + 5n) / NuNv     [= (1 + 5x20)/(10 x10) ≈ 1 ]
    -- Convergence for PIC: n ≈ 20 per cell OK for 3D 
    -- Convergence for continuum: Nu > 10 , Nv > 10 what about filamentation???

• Resolution in velocity space for one cell:
   -- PIC: n (20) 
   -- Continuum: NuNv (100), better 

• Resolution in velocity space when summing over NxNyNz
   -- PIC: n NxNyNz  (increase in resolution with simulation domain), much better
   -- Continuum: NuNv (no change in resolution by increasing simulation domain)

• Numerical properties: 
   -- PIC: long term memory, t = ∞         numerical noise
   -- Continuum: short term memory, t = time step         numerical dissipation
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Special Considerations for Particle Pushing
Mixed representations:
      x_j, v_j, F_j and w_j -- data for j-th particle
      ρ_g and Φ_g - data for the g-th grid 
 -------------------------------
• Charge: scatter and add operation -- particle to grid

      ρ_g(x_j) = ρ_g(x_j) + w_j,    j --- particle

• Solve: grid only

     ∇    Φ_g = ρ_g,  

• Force: gather operation -- grid to particle

      F_j = Φ_g(x_j) 

• Push: particle only

     x_j = x_j + v_j
     v_j = v_j + F_j

• Sensitive to memory bandwidth and memory latency 

^2 
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Simple Models for Collisions

Fe = f‖ef
M
⊥eLet 

cosθ = v‖/v , sinθ = v⊥/v

∂

∂θ
= −v⊥

∂

∂v‖
+ v‖

∂

∂v⊥

Let 

Lorentz Model 
- conserve number density and energy 

C(Fe) =
νei

2sinθ

∂

∂θ

[
sinθ(

∂Fe

∂θ
)
]

Krook (BGK) ModelC(δfe) = −νei

(
δfe − FMe

∫
δfedµdv‖

)

Lenard-Bernstein  Model 
- conserve number density onlyC(fe) = νei

∂

∂v

(
v2

te
∂fe

∂v
+ vfe

)
v‖ → v

• Collisions are strong short range interactions within the Debye sphere with 

 
whereas Poissons’s equation describes weak long range interactions in scales much longer than the 
Debye length. 

g =
1

nλ3
D

! 1,
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Lorentz Model for PIC

∂F

∂t
=

ν

2
∂

∂λ

[
(1− λ2)

∂F

∂λ

] λ ≡ v‖/v = cosθ

v⊥/v = sinθ

Let 〈λ〉 =
∫ 1

−1
λFdλ 〈λ2〉 =

∫ 1

−1
λ2Fdλ

∂〈λ〉
∂t

= −ν〈λ〉

∂〈λ2〉
∂t

= ν(1 − 3〈λ2〉)

standard deviationσ2 ≡ 〈λ2〉 − 〈λ〉2

∂σ2

∂t
= ν

[
1 − 3〈λ2〉 + 2〈λ〉2

]

σ2 → 0
∂σ2

∂t
= ν

[
1 − 〈λ〉2

]

± randomly generated [Boozer and Kuo-Petravic, PF ‘81]

Monte Carlo 
Collisions: v‖(1− ν∆t)± v⊥(ν∆t)1/2 → v‖ v2

‖ + v2
⊥ = cons.
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Lenard-Bernstein Model for VCON

F (x) =
∑

k

F̄ (k)eikx

F (v) =
∑

q

F̄ (q)e−iqv F̄ (q) =
1

Nv

∑

v

F (v)eiqv

F̄ (k) =
1

Nx

∑

k

F (x)e−ikx

Fourier Transforms:

Leap-frog Particle Pusher

One Dimensional Vlasov-Poisson system: 

∂F

∂t
+ v

∂F

∂x
− qα

m

∂φ

∂x

∂F

∂v
= ν

∂

∂v

(
v2

t
∂δF

∂v
+ vF

)

k2φ = 4πe

∫
(Fi − Fe) dv

∂F̄

∂t
− ik

∂F̄

∂q
+ · · · = −ν

(
v2

t q2F̄ + q
∂F̄

∂q

)
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Comparisons between Particle-In-Cell  
and  Vlasov Continuum Methods

Downloaded 22 Jan 2007 to 192.188.106.28. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp

Downloaded 22 Jan 2007 to 192.188.106.28. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp

[Denavit and Kruer, Phys. Fluids 14, 1782 (1971)]
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dF

dt
≡

∂F

∂t
+ v ·

∂F

∂x
+

q

m

(

E +
1

c
v × B

)

·
∂F

∂v
= 0

F ∝ exp(−ik · vt)

Let F ∝ exp(ik · x)

For E = 0 and B= 0, -- free streaming

It arises because a particle perturbed at t = 0, carries the memory of its perturbation 
with it for all times. wherever it goes. This memory can be erased by collisions or 
coarse graining in VCON codes. For PIC codes, this memory is carried by the 
particle for all times until it runs out of the resolution prescribed at t = 0. 

Comparisons between Particle-In-Cell  
and  Vlasov Continuum Methods (cont.)

Krall & Trievelpiece, ‘73
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-- PIC accuracy improves with wavelengths, but it is inaccurate for short wavelength modes. 
Computational time is proportional N log N, but gather/scatter operations involve random access.
-- N^2 calculations are highly accurate for both long and short wavelength modes, but they need more 
computational time.  Need algorithms for Debye shielding effects.
-- For PIC, the phase space volume associated with each particle is fixed for the during of the 
simulation. Thus, for accurate description of the filamentation in phase space, ones need more and 
more particles for long time simulation. 
-- Vlasov continuum (VCON) methods in phase space can be easily parallelizable, but ripple (wrinkle) 
removal has to be handled carefully without sacrificing the nonlinear physics. Specifically, the ripple 
removal, acting like collisions, introduces numerical dissipation. We need to know the consequences. 
-- PIC is similar to Lattice Boltzmann Methods (LBM) -- Boltzmann equation + BGK operator.

Remarks

-- Some of the codes for kinetic simulation of core transport for fusion plasmas: 

GTS - Global General Geometry PIC (PPPL)
GTC - Global PIC (UCI &PPPL)
GEM - Wedge PIC (Colorado)
GT3D - Wedge PIC (JAEA, Japan)
ORB5 - Global General Geometry PIC (CRPP, Switzerland)

GS2 -  Local VCON (Maryland) 
GENE - Local VCON (IPP, Germany) 
GYRO - Wedge VCON  (GA)
GKV - Local VCON (NIFS, Japan)
GYSELA - Global General Geometry VCON (CEA, France)
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